Above-bandgap voltages from ferroelectric photovoltaic devices
نویسندگان
چکیده
منابع مشابه
Above-bandgap voltages from ferroelectric photovoltaic devices.
In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, w...
متن کاملArising applications of ferroelectric materials inphotovoltaic devices
Arising applications of ferroelectric materials in photovoltaic devices" The ferroelectric-photovoltaic (FE-PV) device, in which a homogeneous ferroelectric material is used as a light absorbing layer, has been investigated during the past several decades with numerous ferroelectric oxides. The FE-PV effect is distinctly different from the typical photovoltaic (PV) effect in semiconductor p–n j...
متن کاملLarge enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction
Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by m...
متن کاملOn the use of cyanine dyes as low-bandgap materials in bulk heterojunction photovoltaic devices
Cyanine dyes with absorption edges of almost 1000 nm were used in combination with MEH-PPV for the fabrication of organic solar cells. For blended thin films, a pronounced phase separation between the two components occurred and resulted in photocurrents with different signs for bilayer and bulk heterojunction devices. Absorption spectra and selective dissolution experiments were used to illust...
متن کاملLight Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon
Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Nanotechnology
سال: 2010
ISSN: 1748-3387,1748-3395
DOI: 10.1038/nnano.2009.451